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Abstract-The reactant concentration control of a reactor using Model Predictive Control (MPC) is presented in
this paper. Two major difficulties in the control of reactant concentration are that the measurement of concentration
is not available for the control point of view and it is not possible to control the concentration without considering
the reactor temperature. Therefore, MIMO control techniques and state and parameter estimation are needed. Cne of
the MIMO control techniques widely studied recently is MPC. The basic concept of MPC is that it computes a control
trajectory for a whole horizon time minimising a cost function of a plant subject to a dynamic plant model and an
end point constraint. However, only the initial value of controls is then applied. Feedback is incorporated by using
the measurements/estimates to reconstruct the calculation for the next time step. Since MPC is a model based con-
troller, it requires the measurement of the states of an appropriate process model. However, in most industrial pro-
cesses, the state variables are not all measurable. Therefore, an extended Kalman filter (EKF), one of estimation tech-
niques, is also utilised to estimate unknown/uncertain parameters of the system. Simulation results have demon-
strated that without the reactor temperature constraint, the MPC with EKF can control the reactant concentration
at a desired set point but the reactor temperator is raised over a maximum allowable value. Cn the other hand,
when the maximun allowable value is added as a constraint, the MPC with EKF can control the reactant con-
centration at the desired set point with less drastic control action and within the reactor temperature constraint.
This shows that the MPC with EKF is applicable to control the reactant concentration of chemical reactors.
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INTRODUCTION

An optimisation model based feedback controller design known
as “Model Predictive Control (MPC)” technique has been re-
quired to handle highly nonlinear chemical processes including
constramts. The basic idea of MPC 1s to determine a set of con-
trols for a whole time horizon by minimising a cost function of
the plant subject to a dynamic plant model incorporating plant
nonlinearities, and an end pomt constramt. The mitial value of
control is then applied to the plant.The use of measurements/
estiunates of state and repeating the calculation provides feedback
controls action. Tt has been shown theoretically that, under re-
stricted conditions, this approach guarantees plant stabilisation.
Kwon and Pearson [1977], Mayne and Michalska [1990], and
Kershenbaum et al. [1993] have derived the stabilising properties
of the MPC in several systems.

The control performance of the MPC technique has been
widely tested in several systems for over a decade. First of all,
the MPC techmque was applied together with neural network
structure in pH control which involved significant nonlinearity
and uncertainty. Simulation results showed that the MPC control-
ler with the neural network gave satisfactory control response
[Warwick et al., 1992].
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Secondly, the MPC strategy was tested m the control of a
simulated gas sweetening unit. The control objective was to re-
gulate the output of the modelled umt (the partial pressure of
the carbon-dioxide at the output gas stream ) to a set point value of
0.001 bar by means of manipulating mono-ethanolamine (M.E.A.)
solution and steam flows. The performance of the MPC was
compared to that of open loop optimal control. Tt was found
that the MPC gave better control response than the optimal con-
trol did. Control results showed the success of the MPC m hand-
ling both disturbances and moderate modelling errors. Nonethe-
less, the steady state offset could not be eliminated; the MPC
could not provide any kind of an integral control action [Grbovic,
1992].

Extended work on controlling the gas sweetemung unit was
carried out based on more realistic models. The main goal was
to keep the process output below a specified level, not to sta-
bilise the unit. Simulation results showed that the MPC was able
to account for a large disturbance reasonably well [Kershenbaum
etal., 1993].

The application of the MPC on an exothermic batch reactor
was addressed by eg. Kittisupakom and Ruksawid [1998]. Tt was
found that the MPC could control the temperature of the batch
reactor, which involved highly nonlinear behaviour and subjected
to constraimts, at a desired set point and gave a better control
performance than the PID did. Tn the presence of plant/model
mismatch, the EKF was incorporated in the MPC to estimate
unknown/uncertain parameters. As a result, the MPC with EKF
was robust; it could give good control performance m the pre-
sence of plant/model mismatch.
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The control of a continuous stirred tank reactor using the
MPC techmique has been widely studied by eg. Patwardhan et al.
[1990], Sistu and Bequette [1991] and Ramamurthi et al. [1993].
However, such study has aimed to control the temperature ra-
ther than the reactant concentration of the reactor. On the other
hand, to set up product specifications, the reactant concentration
needs to be controlled rather than the reactor temperature. The
control of reactant concentration faces two major difficulties. The
first one is that it is not possible to control the concentration
without considering the reactor temperature due to safety reasons.
The other one is that the measurement of concentration is not
available for the control point of view. Therefore, this paper is
aimed to study the reactant concentration control of a CSTR
using the MPC with an extended Kalman filter with respect to
the difficulties.

DESCRIPTION OF A CONT I;Z.NUOUS REACTOR

The reactor used by Limqueco and Kantor [1990] has been
studied here. This system consists of a jacketed CSTR m which
a first order, irreversible reaction, A—>B, takes place. Assump-
tions made in formulating the model are: the reactor is perfectly
mixed and no heat loss occurs within the system, the amount of
heat retained in the reactor walls is negligible, all temperatures
are measurable, the jacket temperature can be directly manipu-
lated without delay 1.e. the coolmg water jacket dynamics cen be
neglected and the feed concentration is assumed to be a known
constant n this case.

Under the assumptions above, the energy and mass balances
in the CSTR can be written as follows:

dTr_(-AH) m+ + UrAr

Bty Cae L TET Ty =) )
-K

ddcta K Cae™ + < (Cao-ca) @)

The meaning of letters and symbols are given in Nomencla-
ture. The physical properties and process data are given m Table
1.

The main purpose of this simulation study is to evaluate the
performance of the MPC with estimator to control the reactant
concentration (Ca) of the reactor to a desired steady state by ad-
justing the jacket temperature (Tj) with/without a reactor tem-
perature constraint.

Tabel 1. Physical properties and process data for the experi-

mental study
Ur=68.0 keal/{min-m’ °C) k,=3.64>10" min'
Ar=0.7m’ AH=8000.0 keal/kmol
V=024 m’ E/R=6000.0 'K

Cpr=Cpj keal/(kg’ °C) F=0.0036 m*/min

Cpi=1.0 kealitkg-°C) Tj=293.15 K (20 °C)
Initial steady state condition

Ca(0)=5.364 kmol/m’ Ti(0)=333.15 K (60°C)

Ca0=25.0 kmol/m’ Ca,,=5.364 kmol/m’

Tfo=300.15 K (23 °C)

THEORETICAL DESCRIPTION

1. Model Predictive Control

The basic concept of the Model Predictive Control (MPC) is
that it calculates future controls based on current measurements
via the solution of an optimal control problem but only the first
element of controls 1s applied to the process. Ther, the states are
measured or estimated and used as initial conditions in order to
recalculate the future controls by re-solving the optimal control
problem.
1-1. Optimal Control Problem

In this work, the reactant concentration of the reactor is con-
trolled at a desired set point by adjusting the jacket temperature
(without considering the control cost). Therefore, the optimal con-
trol problem cen be given by a cost fimction (Performance Index):

min ['W(Ca—Ca,,)"dt (3)

where W 15 a weighting factor.
Subject to the system equations (Egs. (1) and (2)), a final state
constraint (Eq. (4)), a bounded control (Eq. (5)) and a reactor
temperature constramt (Eq. (6))

(Ca—Ca,)1)=0 C)
293.15<Tj(t)<333.15 (5)
Trit)<338.15 (©)

with the initial conditions (Egs. (7) and (8)) and time horizon
(Eq. (99

Tr0)=333.15 (N
Ca(0)=5.364 (8)
020, @

The objective function (Eq. (3)) is included to define that the
reactant concentration is controlled to a desired set point mini-
mising the error between the control response and the set point
for a whole time horizon. It should be noted that in several con-
trol problems the control action movement is also included in the
objective function. However, since the main goal of this worl is
to control the reactant concentration with respect to the reactor
comstramt (Eq. (6)) for safety reasons, the mclusion of the con-
trol action movement in the objective function is not consid-
ered. In addition, to ensure that the reactant concentration is
forced to a desired set point at the terminal time (t) [Mayne,
1995], Eq. (4) is included.

To find the solution of the optimal control problems, FROT-
RAN programmes, based on the optimisation algorithm described
by Pytlak and Vinter [1992], have been written for solving the
problems with termmal equality and mequlity constramts and
with constraints on states and controls. Terminal equlity con-
straints are tackled by an exact penalty function. A second order
correction step 18 applied to equality constraints. Sunple control
constraints are tackled by a projection which leads to a fast re-
cogmition of active control constraints at a solution. The mequal-
ity constramts are treated through a feasible direction approach.
A direction of descent is obtained by solving a convex optimal
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Fig. 1. Information flowchart of the MPC algorithm.

control problem by means of quadratic programming procedure.

Fig. 1 illustrates the mformation flowchart of the MPC algo-
rithm. A control trajectory Ulk) (referring to Tj(k)) for an entire
horizon is computed on-line based on curent states. The initial
value of controls 18 then implemented to the system, which meeans
that the control action at time k+1 is the control T(1) (referring
to Tj(1)) of future controls calculated at time k. Some feedback
is provided by measurements of state at the next interval and re-
peating the calculation. In other words, measurements are com-
pared to a set pomt or predicted value so that the error between the
measurements and a set point can be utilised within the MPC
algorithm. The MPC algorithm, then, produces the future controls
which minimise this error.

2. Model Predictive Control (MPC) with Estimator

The MPC techmque provides control actions based upon ref-
erence models. However, in practice, the measurement of the
reactant concentration may not be available. Therefore, the esti-
mates of concentration are needed. Here, the extended Kalman
filter (EKF) described by e.g. Meybeck [1982] is applied to esti-
mate the reactant concentration on-line using the available meas-
ured temperature.

For the purposes of estimation, the state equations for the re-
actor are: from energy and matenal balances of the reactor, (Egs.
(1) and (2)). The EKF tuning parameters: P, Q and R, are tuned
to reflect the accuracy of estimation of unmeasured reactant con-
centration. Table 2 shows the values of the EKF tuning param-
eters: P, Q and R and initail state estimates for the EKF.

Fig. 2 illustrates the flowchart of the MPC with the EKF ap-
proach. As we see from the MPC algorithm, a set of control ac-

Table 2. Filter parameters and initial state estimates for simu-
Iation studies

P, =10

P, =03

X,(0)=333.15K
X,(0)=5.364 kmol/m’
R, =005

Q,=9%9.0
Qr=4.0

May, 2000
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Fig. 2. Information flowchart of the MPC with EKF.

tions is determined on-line based on current states. Only the first
element of controls is applied to the system; the control action at
time k-+1 1s the control U(1) (referring to Tj(1)) of future con-
trols calculated at time k. Some feedback is obtained by measure-
ments of state at the next mterval and repeating the calculation.
The inclusion of the EKF is for estimating the unmeasured state
X, (referring to Ca) using the available measurement of X (re-
ferring to Tr). Measurements and estimates are compared to a
set point or predicted value. As a result, the error between the
measurements and set point or predicted value caused by plant/
model mismatch or disturbances can be utilised within the MPC
algorithm. The MPC algorithm, then, produces the future controls
which mimmise this error based on the updated model parame-
ters.

CONTROL IMPLEMENTATION

1. Case Study

The main purpose of this simulation study is to evaluate the
performance of the MPC algorithm. Here, the MPC algorithm
[with/without the reactor temperature constramt (Eq. (6))] has
been studied to control the reactant concentration to a desired set

Inactive Active controller

1+25% n T

A 4

v

100 200
Time

Fig. 3. Case study (a step disturbance in feed flowrate).
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Fig. 4. Response of the MPC with EKF.
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Fig. 5. Response of the MPC with EKF subject to the reactor
temperature constraint.

point by adjusting the jacket temperature. The reactor is simu-
lated from an imtial conditions until a feed flowrate disturbance
(25% increase form the nominal case) is introduced at time =
100 minutes and is kept throughout the simulation. Then the
MPC 15 activated at time = 200 mmutes. Fig. 3 illustrates the case
study.

2. Simulation Results

To achieve the main goal, here, the weighting factor W is cho-
sen to be 10.

Figs. 4 and 5 show the control performances of the MPC with
EKF with and without the reactor temperature constraint repec-
tively. It can be seen that without the reactor temperature con-
stramt, the MPC with EKF can bring the reactant concentration
quickly back to the desired set point with a small overshoot. As
expected, to bring the reactant concentration back to the set
point as quickly as possible, the reactor temperature needs to be
raised quickly; it goes beyond the maximum allowable value
(65 °C). Then, it is reduced and settled at about 64 °C and the
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Fig. 6. Response of the MPC with EKF subject to the reactor

temperature constraint in the presence of mismatch in
heat transfer coefficient.

180 200

reactant concentration is stable at the set point.

On the other hand, without any change in MPC or EKF para-
meters, the MPC with the EKF subject to the reactor tempera-
ture constraint gives control actions to quickly raise the reactor
temperature up too. However, since the reactor temperature con-
straint is included, the reactor temperature cannot be increased
over the constramt. Therefore, the reactant concentration takes
longer time to reach the set point than the previous result. In
other words, the MPC with EKF can contrel the reactant concen-
tration at the desired set point with less drastic control action
and within the reactor temperature. This result demonstrates that
the MPC algorithm can handle state constraints of the system
constraint.

3. Robustness Test

The MPC algorithm with EKF has been tested 1 the presence
of plant/imodel mismatch in the heat transfer coefficient (20% in-
crease) and the rate constant (20% increase) and with the reac-
tor temperature constraint. It was found that althought the mis-
matches have been included, the MPC with EKF can still control
the reactant concentration at the set pomt and within the reactor
temperature constraint. This result ensures that the MPC with
EKF is able to control the reactant concentration of chemical re-
actors without any violation of safety concems.

CONCLUSIONS

The Model Predictive Control (MPC) with Extended Kalman
Filter (EKF) with/without state constraints has been studied here.
In this work, the MPC with EKF has been applied to control
the reactant concentration of a reactor. Simulation results have
demonstrated that without the reactor temperature constramt, the
MPC with EKF can control the reactant concentration at a de-
sired set point but the reactor temperator 1s raised over a maxi-
mum allowable value. On the other hand, when the maximun
allowable value is added as a constraint, the MPC with EKF can
control the reactant concentration at the desired set point with
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less drastic control action and within the reactor temperatire con-
stramt. In addition, 1 the presense of plant/model mismatches
in the heat transfer coefficient and the rate constant, the MPC
with EKF can still produce good control response; the reactant
concentration 1s controlled at the set point and within the reac-
tor temperature contraint. This shows that the MPC with EKF is
applicable to control the reactant concentration of chemical reac-
tors.

NOMENCLATURE
A : component “A”
Ar - heat transfer area [m?]
B : component “B”
Ca : reactent concentration [kmol/m”]
Cao  :nominal feed concentration [kmol/m’]
Cp : specific heat capacity [keal/(kg-C)]
E s activation energy [kealdkamol]
F : volumetric flowrate [m*/min]
Fo : nominal volumetric flowrate [m*/min]
AH - heat of reaction [kcal/kmol]
kg - Arrhenius pre-exponential constant [min™ |
P, : EKF parameters
R s universal gas constant [keal{km ol -K))EKF parameters
t : time [Min]
Tr : reactor temperature [K]
Tj : jacketed temperature [K]
Tf : feed temperature [K]
U : manipulated variables
Ur - heat transfer coefficient [keal/(s-m’-C)]
Vr : volume of reactor [m’]
X : state variables
Greek Letter
P - reactant density [kg/m’]
Subscipts
a : component “A”
C - cooling water
f : feed condition
0 : iutial condition or nominal condition
sp : set point
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